Opinion: NASA has changed since Apollo 11

Ralph Vartabedian and Samantha Masunaga
The Los Angeles Times

The passage of half a century has blurred many of the reasons that the United States was able to accomplish what seemed like science fiction: the July 20, 1969, landing of Apollo 11 on the moon.

The Apollo program’s stunning technical success depended on a government leadership culture, an industrial organization, a tolerance for risk and a political environment that do not exist today – even as NASA insists it will land humans on the moon in five years.

Could it be duplicated? “Lots of luck with that,” said Jay Honeycutt, an Apollo-era engineer in flight operations who later became chief of the Kennedy Space Center in Florida. “We could if they let us.”

Honeycutt was among more than a dozen Apollo-era leaders and contemporary space experts who agreed, in interviews, that changes in American society have made the idea of landing humans on the moon far more challenging now than it was 50 years ago.

“Technically it would be easier today, because we have more tools,” said Gerry Griffin, an Apollo-era flight director who later became chief of the Johnson Space Center in Texas. “Politically and financially it would be a different question. I am not sure we could ever get that reestablished.”

“It is easier to build a spacecraft than to build a team,” said Eugene Kranz, mission director of Apollo 11. “You have enough knowledge in the industry, but you need top-level leadership that is capable of knocking heads to get people to work as a team.”

Gene Kranz, the most prominent of the Apollo era flight directors and later Director of NASA Flight Operations, stands behind the console where he worked during the Gemini and Apollo missions,  Monday, June 17, 2019, in Houston.

“I fear that we no longer have the ability to do what we did in the 1960s,” wrote Don Eyles, a mathematics graduate who in his 20s helped produce the navigation software for the lunar module. Until then, “nobody knew much about programming a spacecraft guidance computer,” so the job went to someone just out of college, one player in a project that employed 400,000 Americans.

“We haven’t had the conviction since then,” he said in an interview.

The success of Apollo 11 depended on a lot of things that seem unlikely today.

The country’s social needs were set aside to provide NASA funding that at its peak reached an inflation-adjusted $47 billion or more in a single year. NASA consumed 4.5% of the federal budget, compared with about 0.5% today, meaning that if it were to have the same share now its budget would not be the current $21.5 billion, but nearly $200 billion.

The space race gave a political justification for the project, but most likely played little role in its success.

“People say the reason Apollo was successful is that we were trying to beat the Russians,” Honeycutt said. “That may have been true in Washington, but I can tell you in the Mission Control Center and the other centers, beating the Russians was not in anybody’s mind.”

What did make the space program succeed, in part, was that it took place at an extraordinary moment in American history when youth were playing a bigger and more influential role than ever before, exemplified by a young president, a youth culture that demanded change and an army of young engineers who wanted to remake the world.

“We had flight controllers who were straight out of college,” Griffin said. “We had all these young guys who were raring to go. The leadership pushed decisions down in the organization, they didn’t elevate them. They trusted people below them. The idea was, let’s not worry about who gets credit; let’s not second-guess everybody. We knew the topics better than they did. That’s not what we have now. I could feel it in NASA before I left.”

Another change in NASA since then has been its higher safety margins – in other words, its aversion to risk.

“People get more and more into risk-avoidance,” said Honeycutt. “You don’t want to be unsafe, but there is only one way to be completely safe and that is not to launch. As you move up the chain, acceptance of risk gets tighter and tighter.”

Flight controllers at the Mission Operations Control Room in the Mission Control Center at the Manned Spacecraft Center in Houston, celebrate the successful conclusion of the Apollo 11 lunar landing mission on July 24, 1969.

With today’s thinking, Honeycutt said, the lunar program would have been canceled after the near disaster of Apollo 13, when an explosion damaged the spacecraft part way to the moon. It was the quick thinking of the NASA flight staff under the direction of Kranz that ensured the crew’s safe return.

Among outsiders, there are darker concerns about what the changes at NASA represent about the nation.

“The way our society has changed, it is not clear whether we are equipped to make use of scientific and engineering resources,” said James Moore, a USC engineering professor who decided to become an engineer because of the Apollo moon landing. “Public authority seems to be more focused on process and less focused on performance.”

In addition, the political landscape and the ability to forge coalitions have changed.

“There was no partisanship on the (House) Science Committee,” said Don Fuqua, the Florida Democrat who chaired the House human spaceflight subcommittee during the latter part of the Apollo program, and later the full Science Committee. “I never took anything to the House floor that the ranking member (New Mexico Republican Manuel Lujan Jr.) and I did not agree on. We were good personal friends. We went to launches together. We went to dinner together. Our wives were good friends.”

“I don’t think we could have that collaboration today,” he added. “If you cross the aisle to talk to somebody, it is like collaborating with the enemy.”

Efforts to grow the human spaceflight mission have repeatedly foundered. The U.S. space agency has not fully developed a new rocket engine since the space shuttle in the 1970s, and the industrial base has withered.

In 2010, President Obama canceled the Constellation program, which was begun in 2005 with the goal of returning to the moon as a first step to Mars. Obama set a new goal of a human landing on an asteroid using parts left over from main engines on the space shuttle and an enlarged version of the space shuttle solid rocket booster.

Those would be coupled with the Orion capsule that could carry four astronauts. It is this foundation that NASA is planning to use for the lunar mission in 2024.

Public support for returning to the moon is not the same as in the 1960s. A Pew Research poll last year found that only 13% of Americans thought putting astronauts on the moon should be a top NASA priority; the majority said the agency should focus on monitoring climate or tracking asteroids.

The current NASA administrator, Jim Bridenstine, said it will cost far less to return to the moon, thanks to the investments made in the 1960s and to the lower cost of electronics today. He puts the cost at $20 billion or less, not including the $10.5 billion spent annually on the human spaceflight program that largely supports the International Space Station. But so far, the agency has requested only $1.6 billion of that $20-billion requirement.

But he is optimistic and says the private sector is eager to invest in the project. “We didn’t know there was water ice on the moon until 2009,” he said. “What else is there that we don’t know?”

Apollo 11 astronauts stand next to their spacecraft in 1969, from left:  Col. Edwin E. Aldrin, lunar module pilot; Neil Armstrong, flight commander; and Lt. Michael Collins, command module pilot.

Where genuine breakthroughs have occurred, it has not been in the NASA human spaceflight program.

Commercial space companies, such as Elon Musk’s SpaceX, have risen to prominence. The Hawthorne-based company currently carries cargo for NASA to the space station with its Falcon 9 rockets and Dragon cargo capsule, and will soon use those rockets and a Crew Dragon vehicle to ferry astronauts to the station.

SpaceX stunned the aerospace industry in 2015 when it vertically landed a first-stage booster back on land. Since then, it has landed boosters more than 40 times and has flown previously used boosters more than 20 times.

The SpaceX culture has parallels with 1960s-era NASA. Significant input comes from the lowest parts of the organization, and its employees tend to be “a young group that doesn’t really know what’s impossible because they haven’t been beaten down,” said Garrett Reisman, a former NASA astronaut who is a senior adviser for the company and teaches at USC. “They go out and do impossible things.”

And NASA’s unmanned probes and orbital observatories are a point of national pride. NASA, led by the Jet Propulsion Laboratory in La Canada Flintridge, has landed eight increasingly sophisticated generations of machines on Mars. But even those accomplishments had to overcome changes in the NASA organization.

“At NASA, there is a whole lot more bureaucracy than there was in the 1970s or even the 1980s,” said Charles Elachi, who led JPL for 15 years ending in 2016. “It would take months to years to make decisions on something that could be done in weeks.”

Ralph Vartabedian and Samantha Masunaga wrote this article for The Los Angeles Times.